首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40305篇
  免费   3994篇
  国内免费   10055篇
化学   44829篇
晶体学   643篇
力学   886篇
综合类   309篇
数学   2414篇
物理学   5273篇
  2024年   41篇
  2023年   526篇
  2022年   727篇
  2021年   1249篇
  2020年   1759篇
  2019年   1480篇
  2018年   1539篇
  2017年   1516篇
  2016年   1699篇
  2015年   1535篇
  2014年   2270篇
  2013年   3753篇
  2012年   3149篇
  2011年   2580篇
  2010年   2040篇
  2009年   2415篇
  2008年   2701篇
  2007年   2873篇
  2006年   2679篇
  2005年   2518篇
  2004年   2431篇
  2003年   1894篇
  2002年   1354篇
  2001年   1085篇
  2000年   1118篇
  1999年   989篇
  1998年   862篇
  1997年   788篇
  1996年   654篇
  1995年   681篇
  1994年   582篇
  1993年   432篇
  1992年   488篇
  1991年   371篇
  1990年   288篇
  1989年   231篇
  1988年   183篇
  1987年   120篇
  1986年   123篇
  1985年   99篇
  1984年   89篇
  1983年   49篇
  1982年   54篇
  1981年   50篇
  1980年   37篇
  1979年   31篇
  1978年   36篇
  1977年   34篇
  1976年   37篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
陈雅琼  宋洪东  吴懋  陆扬  管骁 《化学进展》2022,34(10):2267-2282
蛋白质-多糖复合体系作为生物活性物质传递系统的壁材,有着人工合成聚合物或无机物等其他材料不可比拟的多重优势。本文就蛋白质和多糖之间的连接方式及蛋白质-多糖复合体系形成传递系统的多种形式进行了综述,以及对此领域的发展趋势进行了展望。结合蛋白质和多糖的结构特点,二者之间的链接方式分为非共价结合的物理共聚,和共价结合的美拉德偶联、化学交联、酶催化交联等方式,文中分别对各种连接方式的原理和机理,以及其影响因素做了深入阐述。以蛋白质-多糖复合体系为壁材对活性物质的传递形式大体上分成乳化系统、胶束、纳米凝胶、分子复合物以及壳核结构等系统。不同的活性物质的特征和传递需求,可针对性地选择合适结构的蛋白质和多糖种类以及二者的连接方式和传递系统的形式。并且,随着研究的逐步发展和推进,此领域的发展趋势朝着智能化和靶向性的方向进行。目前活性物质的蛋白质-多糖复合体系的传递系统,还依然面临着系统设计、评价和应用等多方面的挑战,这就要求我们在更全面更深入了解认识其对活性物质影响和功效的基础上,安全合理地设计和深入细致地评价活性成分的传递系统。  相似文献   
32.
A new derivative of dioxouranium(VI) salen complex, [UO2(L)(pyridine)], where [L = N,N′-Bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine] is synthesized and characterized by elemental analysis (C, H, N), FT-IR, ESI-MS spectrometry, UV/Vis, fluorescence, 1H and 13C NMR spectroscopy and thermal gravimetric (TG) study. Furthermore, the single crystal X-ray diffraction measurements of the complex were carried out at 100 and 273 K. The crystal structure measurements revealed that the complex has distorted pentagonal bipyramidal geometry with uranium atom located at the centre and bonded to two phenoxy oxygen and two azomethine nitrogen in tetradenate fashion and one nitrogen from pyridine making it seven coordinated. In addition, the photoluminescence property of the complex was also recorded.  相似文献   
33.
A novel hydrogen bonded liquid crystal (HBLC) complex is synthesized from non-mesogenic benzylmalonic acid (BMA) and mesogenic 4-nonyloxybenzoic acid (9OBA). Structural properties and optimized vibrational frequencies of BMA + 9OBA have been studied by FT-IR spectrum. The weak intermolecular interaction between the molecules is proved by NBO and Mulliken charge distribution analysis. The optical and thermal properties are investigated by POM, DSC, UV-Visible and PL techniques. The present HBLC complex exhibits schlieren textures of nematic, broken focal conic texture of smectic C and multicolored mosaic texture of smectic G phases respectively which is not observed in the pure mesogen (9OBA). The HBLC complex geometry is optimized by DFT method at the level of B3LYP basis set 6311G (d, p). The electronic properties of HBLC complex such as, NBO, HOMO-LUMO, ESP and Mulliken charge distribution are also studied. A noteworthy observation is brought out by identifying the presence of photoluminescence in nematic phase due to the variation in intermolecular interaction of the mesophase. The utility of the same complex is discussed. The phase width, thermal stability factor, tilt angle, phase transition temperature and its enthalpy values are reported.  相似文献   
34.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
35.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
36.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
37.
Kinetics and mechanism of the gas-phase reaction of CH3C(O)OCH(CH3)CH2OCH3 (MPA) with OH radicals in the presence of O2 and NO have been investigated theoretically by performing a high and reliable level of theory, viz., CCSD(T)/6-311?+?G(d,p)//BH&HLYP/6-311++G(d,p)?+?0.9335×ZPE. The calculations predict that the H-abstraction from the ?CH2?O? position of MPA is the most facile channel, which leads to the formation of the corresponding alkoxy radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 under atmospheric conditions. This activated radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 will undergo further rearrangement, fragmentation and oxidative reactions and predominantly leads to the formation of various products (methyl formate HC(O)OCH3 and acetic anhydride CH3C(O)OC(O)CH3). In the presence of water, acetic anhydride can convert into acetic acid CH3C(O)OH via the hydrolysis reaction. The calculated total rate constants over the temperature range 263–372?K are used to derive a negative activation energy (Ea= ?5.88 kJ/mol) and an pre-exponential factor (A?=?1.78×10?12 cm3 molecule?1 s?1). The obtained Arrhenius parameters presented here are in strong agreement with the experimental values. Moreover, the temperature dependence of the total rate constant over a temperature range of 263?1000?K can be described by k?=?5.60 × 10?14×(T/298?K)3.4×exp(1725.7?K/T) cm3 molecule?1 s?1.  相似文献   
38.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   
39.
The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as k = 10 000.  相似文献   
40.
Silver-mediated α-dC–Ag+–β-dC hybrid base pairs decorated with 5-iodo- or 5-octadiynyl residues are well accommodated in duplex DNA. A strong Tm increase and favorable thermodynamic data for duplex DNA were observed after addition of silver ions. The phenomenon is particularly obvious when both nucleobases of the base pairs are functionalized. Neither the position of the base pair, nor the type of 5-substituent had a negative influence. On the contrary, functionalization of conventional silver-mediated β-dC–Ag+–β-dC homo base pairs showed a negative impact induced by the bulky substituents. To this end, cytosine modified 12-mer oligodeoxynucleotides were prepared by solid-phase synthesis employing new α-anomeric 2′-deoxycytidine phosphoramidites. A multigram scale synthesis was developed for 5-iodo-α-d -2′-deoxycytidine ( 1 ) employing the direct glycosylation of cytosine with Hoffer's α-d -halogenose followed by separation of anomeric DMT nucleosides. Regarding base-pair stability and functionalization silver-mediated α/β-dC hybrid base pairs were found to be superior to β/β-dC homo pairs. According to their extraordinary properties, they might find applications in DNA diagnostics, material science, or nanotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号